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Abstract

The main objective of this paper is to develop a continuum model for directional tensile failure that can simulate

weakening and void formation due to tensile failure. Directionality in the model allows simulation of weakening to

tension applied in one direction, without weakening to subsequent tension applied in perpendicular directions. The

model is developed within the context of a properly invariant non-linear thermomechanical theory. Specifically, it is

shown how the model can be combined with general constitutive equations for porous compaction and dilation, as well

as viscoplasticity. The thermoelastic response is hyperelastic, with the stress being determined by derivatives of the

Helmholtz free energy, and the material is considered to be elastically isotropic. In particular, it is assumed that the rate

of inelasticity due to tensile failure is coaxial with the tensor measure of elastic deformation (and hence stress). This

causes the rate of dissipation to take a particularly simple form which can be shown to satisfy the second law of

thermodynamics. A numerical procedure for integrating these evolution equations is proposed and a number of ex-

amples are considered to explore the response of the model to different loading histories.
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1. Introduction

Constitutive models for tensile failure and damage typically include one or more of the following

phenomena:

(P1) a reduced yield strength;

(P2) a reduced elastic modulus; and

(P3) an evolving void strain.

These models can remain isotropic or they can introduce anisotropic damage.
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Continuum damage mechanics (e.g. Curran et al., 1987; Krajcinovic, 1996) generalizes the early work

of Kachanov (1958) for rupture under creep conditions. The simplest continuum damage model in-

cludes the phenomena (P1) by introducing an evolution equation for a scalar measure of damage

that reduces the magnitude of the yield strength. Another example is the Gurson model for void
growth (Gurson, 1977) which introduces the effects of porosity and pressure on the yield surface in ductile

metals.

More complicated models include the phenomena (P2) and introduce evolution equations for scalar and

tensorial measures of damage can be used to modify the elastic stiffness of the material (e.g. Carol et al.,

2001). However, when the elastic response is modified by multiple scalars or tensors, the notion of damage

as a weakening of the material is not so clear (Elata and Rubin, 1994). Also, it is necessary to ensure that

the second law of thermodynamics is satisfied, with the damage process being dissipative.

Using linear elastic fracture mechanics to characterize effective properties of materials containing
multiple interacting idealized cracks has also been a very active research area, and an overview of this field

can be found in (Nemat-Nasser and Hori, 1993; Kachanov et al., 1994). This approach is successful for

linear elastic problems but generalizations for finite deformation are not straight-forward, especially when

it is necessary to model the full non-linear thermomechanical coupling that is active in shock waves.

Usually, attempts are made to introduce non-linear phenomenological evolution equations with coefficients

and functions that incorporate features of the results of fracture mechanics (e.g. Rajendran et al., 1989). If

the cracks are randomly oriented and the crack density is high then the elastic response remains reasonably

isotropic. Within this framework, it is possible to develop constitutive equations for the shock response of
brittle materials (e.g. Bar-on et al., 2003) which include the phenomena (P2) and (P3) by introducing a void

strain through an evolution equation for porosity.

A comprehensive model for porous elastic–viscoplastic material with tensile failure that is applicable to

shock problems is recorded in (Rubin et al., 2000). In this model and evolution equation for porosity is used

to introduce voids and limit the amount tensile pressure. Also, the Lode angle is used to modify the yield

strength to exhibit the typical characteristic of a brittle material that it fails at a much lower stress in tension

than it does in compression. Moreover, since the Lode angle is an isotropic invariant of Cauchy stress these

constitutive equations only model isotropic damage.
Menzel and Steinmann (2001) have recently developed a model for anisotropic continuum damage

mechanics at large strains. This formulation introduces a strain energy function that depends on invariants

of total strain relative to a structural tensor. Moreover, this structural tensor represents damage and is

determined by an evolution equation of the type considered by Betten (1985). In their general forms, these

constitutive equations are capable of modeling the phenomena (P2) and (P3).

The main objective of a constitutive model for directional tensile failure, like the one developed in this

paper, is to model the fact that although a brittle material (like rock) can fail in one direction it may retain

virgin strength to tensile failure in a perpendicular direction. From the mathematical point of view it is
always possible to propose evolution equations for the internal state variables that ensure maximum dis-

sipation. However, such constitutive assumption may be difficult to interpret physically. Therefore, a major

challenge in the development of a theory of directional tensile failure is to develop a theoretical structure

that is amenable to the analysis of physically based constitutive assumptions and is amenable to the de-

velopment of a robust integration scheme.

The model developed in this paper focuses mainly on the phenomena (P3). Porosity is used as an iso-

tropic measure of volumetric void strain and its evolution is influenced by tensile failure [see (39b)]. Fur-

thermore, instead of introducing a void strain tensor, the inelastic effects of directional void opening and
closing are modeled by introducing their effects on the rate of evolution of elastic deformation [see (36a)].

Specifically, it is assumed that the rate of inelasticity due to tensile failure is coaxial with the tensor measure

of elastic deformation (and hence stress). This causes the rate of dissipation to take a particularly simple

form [see (31)] which can be analyzed easily.
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An outline of this paper is as follows. Section 2 briefly reviews the basic equations of continuum

thermodynamics, Section 3 introduces the general constitutive structure and Section 4 proposes specific

constitutive equations. Section 5 presents details of the numerical integration scheme, Section 6 discusses a

number of example problems which demonstrate the predictions of the model, and Section 7 presents
conclusions.

Throughout the paper bold faced symbols are used to denote tensors and I denotes the second order unit

tensor. Also, a � b denotes the usual scalar product of two vectors a, b and A � B ¼ trðABTÞ denotes the

scalar product of two second order tensors A, B. Moreover, BT denotes the transpose of B, trA ¼ A � I
denotes the trace operation, detðAÞ denotes the determinant of the tensor A, and the symbol � denotes the

tensor product operator.
2. Basic equations

By way of background it is recalled that X denotes the location of a material point in a fixed reference

configuration, x denotes the location of the same material point in the deformed present configuration at
time t, v ¼ _xx denotes the absolute velocity of the material point, and L ¼ ov=ox denotes the velocity gra-

dient. Here, and throughout the text a superposed dot is used to denote material time differentiation

holding X fixed.

The constitutive equations are developed using the thermodynamical procedures proposed by Green and

Naghdi (1977, 1978). Within this context, the usual laws of conservation of mass and balances of linear

momentum, angular momentum and energy are supplemented by a balance of entropy which in local form

is written as
q _gg ¼ qðsþ nÞ � div p; ð1Þ

where q is the mass per unit present volume, g is the specific (per unit mass) entropy, s is the specific external
rate of supply of entropy, n is the specific rate of internal production of entropy, p is the entropy flux per

unit present surface area, and div denotes the divergence operator in the present position x. Also, it is

recalled that s and p are related to the absolute temperature h, the specific external rate of heat supply r, and
the heat flux vector q that appear in the energy equation by the expressions
s ¼ r
h
; p ¼ q

h
: ð2Þ
In general, n can be separated into two parts
qhn ¼ �p � gþ qhn0; ð3Þ

where g ¼ oh=ox is the temperature gradient with respect to the present position. One part ð�p � gÞ is re-
lated to the entropy production due to heat conduction and another part ðqhn0Þ is related to the entropy

production due to material dissipation (Rubin, 1986).

Using (1)–(3) the rate of heat supplied to the body can be written in the form
qr � div q ¼ qh _gg � qhn0: ð4Þ

Thus, the local form of the balance of energy can be expressed in the equivalent forms
q _ee ¼ qr � div qþ T �D; qhn0 ¼ T �D� qð _ww þ g _hhÞ; ð5a; bÞ

where the specific Helmholtz free energy w and the specific internal energy e are related by the expression
w ¼ e � hg: ð6Þ

Also, T is the Cauchy stress tensor and D is the symmetric part of the velocity gradient L.
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Constitutive assumptions for the quantities
fw; g; e;T; p; n0g; ð7Þ

are restricted by the usual invariance conditions under superposed rigid body motions and by the re-

quirements that the balance of angular momentum
TT ¼ T; ð8Þ

and the balance of energy (5b) be satisfied for all thermomechanical processes. Furthermore, these con-

stitutive equations are required to satisfy statements of the second law of thermodynamics with include the

condition that heat flows from hot to cold
�p � g > 0 for g 6¼ 0; ð9Þ
and the condition that the material dissipation is non-negative
qhn0 P 0: ð10Þ
3. Constitutive equations

In contrast with standard approaches to plasticity which introduce measures of inelastic deformation
through evolution equations, the approach taken here is motivated by the works of Eckart (1948) and

Leonov (1976) who propose evolution equations directly for elastic deformation measures. Additional

physical reasons for abandoning measures of plastic deformation can be found in (Rubin, 1994, 1996,

2001). Specifically, within the context of the proposed model it is convenient to introduce a measure of

elastic deformation as a symmetric, invertible, positive definite tensor Be which is determined by integrating

the evolution equation
_BBe ¼ LBe þ BeL
T � J 2=3

e A; ð11Þ
where Je is a pure measure of elastic dilatation
J 2
e ¼ detðBeÞ: ð12Þ
The tensor A includes the inelastic effects of the rate of plastic deformation as well as that due to directional

tensile failure. Moreover, with the help of the work of Flory (1961), it is possible to define B0
e as a uni-

modular tensor which is a pure measure of elastic distortional deformation
B0
e ¼ J�2=3

e Be; detðB0
eÞ ¼ 1: ð13Þ
Also, using the fact that
d½detðBeÞ

dt

¼ detðBeÞB�1
e � _BBe; ð14Þ
it can be shown that Je and B0
e are determined by the evolution equations
_JJe
Je

¼ D � I� 1

2
A � B0�1

e ; ð15aÞ

_BB0
e ¼ LB0

e þ B0
eL

T � 2
3
ðD � IÞB0

e � A
h

� 1
3
ðA � B0�1

e ÞB0
e

i
: ð15bÞ
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Here, the Helmholtz free energy w is assumed to be a function of the variables
fJe;B0
e; hg: ð16Þ
However, since w must remain unaltered under superposed rigid body motions (SRBM) it follows that it

can be a function of B0
e only through its two independent invariants
a1 ¼ B0
e � I; a2 ¼ B0

e � B0
e: ð17Þ
For simplicity, w is taken to be independent of a2 so that it takes the form
w ¼ wðJe; a1; hÞ: ð18Þ

Using this expression, the reduced form of the balance of energy (5b) yields the equation
qhn0 ¼ T

�
� qJe

ow
oJe

I� 2q
ow
oa1

B00
e

�
�D� q g

�
þ ow

oh

�
_hh þ 1

2
qJe

ow
oJe

A � B0�1
e

h i
þ q

ow
oa1

A

�
� 1

3
A � B0�1

e

� �
B0

e

�
� I; ð19Þ
where B00
e is the deviatoric part of B0

e

B00
e ¼ B0

e � 1
3
ðB0

e � IÞI: ð20Þ
Sufficient conditions for (19) to be satisfied for all thermomechanical processes allow the stress and the
entropy to be given in the hyperelastic forms
T ¼ �pIþ T0; p ¼ �qJe
ow
oJe

; T0 ¼ 2q
ow
oa1

B00
e ; g ¼ � ow

oh
; ð21a–dÞ
where p is the pressure and T0 is the deviatoric part of the stress. Since these forms cause the deviatoric

stress T0 to vanish when B0
e ¼ I, the value of B0

e is known in any stress-free state. Moreover, the rate of

dissipation becomes
qhn0 ¼ 1

2
qJe

ow
oJe

A � B0�1
e

h i
þ q

ow
oa1

A

�
� 1

3
A � B0�1

e

� �
B0

e

�
� I: ð22Þ
For porous materials it is common to introduce the current value / of porosity, its reference value U,

and the reference density qs0 of the solid matrix, such that
Je ¼
1� /
1� U

� �
J ; q0 ¼ ð1� UÞqs0; q ¼ ð1� /ÞJ�1

e qs0; ð23a–cÞ

_JJe ¼ Je D � I
"

�
_//

1� /

#
; ð23dÞ
where use has been made of the conservation of mass and the rate of change of the total dilatation J
qJ ¼ q0; _JJ ¼ JD � I: ð24a; bÞ

Then, the constitutive equations (21) for stress can be rewritten in the more common forms (Carroll and

Holt, 1972)
p ¼ ð1� /Þps; T0 ¼ ð1� /ÞT0
s; ð25a; bÞ

ps ¼ �qs0

ow
oJe

; T0
s ¼ 2J�1

e qs0

ow
oa1

B00
e ; ð25c; dÞ
where ps and T0
s are the pressure and deviatoric stress of the solid matrix, respectively.



4304 M.B. Rubin, I. Lomov / International Journal of Solids and Structures 40 (2003) 4299–4318
Next, the inelastic deformation tensor A is separated into a part Ap (Rubin and Attia, 1996) associated

with viscoplasticity and a part Av associated with void formation (due to porosity and cracks) due to tensile

failure
A ¼ Ap þ Av; Ap ¼ Cp B0
e

"
� 3

B0�1
e � I

( )
I

#
; ð26Þ
where the scalar Cp requires a constitutive equation. Thus, the rate of dissipation (22) can be written in the

alternative form
n0 ¼ n0
d þ n0

v; qhn0
d ¼ q

ow
oa1

Cp B0
e � I

"
� 9

B0�1
e � I

( )#
; ð27a; bÞ

qhn0
v ¼

1

2
qJe

ow
oJe

Av � B0�1
e

h i
þ q

ow
oa1

Av

�
� 1

3
Av � B0�1

e

� �
B0

e

�
� I; ð27cÞ
where n0
d is related to the dissipation of plastic distortional deformation and n0

v is related to the dissipation

of void formation.

In order to propose a constitutive equation for Av it is convenient to define pi as the orthonormal right-

handed set of eigenvectors of B0
e, which are ordered so that
B0
e ¼ b1ðp1 � p1Þ þ b2ðp2 � p2Þ þ b3ðp3 � p3Þ; b1 P b2 P b3 ¼

1

b1b2

> 0: ð28Þ
Thus, in view of the constitutive equations (21), the stress T can be written in its spectral form
T ¼ r1ðp1 � p1Þ þ r2ðp2 � p2Þ þ r3ðp3 � p3Þ; r1 P r2 P r3; ri ¼ �p þ r0
i;

r0
i ¼ 2q

ow
oa1

bi

�
� 1

3
ðB0

e � IÞ
�
; ð29Þ
where ri are the ordered principal stresses. Next, it is assumed that the rate of void formation tends to

reduce these principal stresses so that Av is specified in the form
Av ¼ 2 Cv1b1ðp1½ � p1Þ þ Cv2b2ðp2 � p2Þ þ Cv3b3ðp3 � p3Þ
; ð30Þ
where the scalar functions Cvi require constitutive equations. Thus, with the help of (21), (28)–(30), the rate

of dissipation (27c) reduces to
qhn0
v ¼ r1Cv1 þ r2Cv2 þ r3Cv3: ð31Þ
Moreover, comparison of (15a) with (23d) and use of (26) and (30) indicates that the rate of change of

porosity is given in the simple form
_//
1� /

¼ 1

2
A � B0�1

e ¼ Cv1 þ Cv2 þ Cv3: ð32Þ
Next, using the spectral representation (28) it can be shown that
B0
e � I�

9

B0�1
e � I

( )
P 0: ð33Þ
Moreover, for the model under consideration, both ow=oa1 and Cp are each non-negative so plastic de-

formation is dissipative
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qhn0
d P 0 for

ow
oa1

�
P 0 and Cp P 0

�
: ð34Þ
For later convenience, the auxiliary variables Cf and C0
f i are defined so that Cvi can be written in the forms
Cvi ¼
CI

3
þ Cf i; Cf ¼ Cf1 þ Cf2 þ Cf3; C0

f i ¼ Cf i �
Cf

3
: ð35Þ
Then, with the help of (26), (28) and (30), the dissipation (31), the rate of change of porosity (32), and the

rate of elastic distortional deformation (15b) can be rewritten in the forms
n0
v ¼ n0

I þ n0
f ; qhn0

I ¼ �pCI; qhn0
f ¼ r1Cf1 þ r2Cf2 þ r3Cf3; ð36a–cÞ

_//
1� /

¼ CI þ Cf ; ð36dÞ

_BB0
e ¼ LB0

e þ B0
eL

T � 2
3
ðD � IÞB0

e � Ap � 2b1C
0
f1ðp1 � p1Þ � 2b2C

0
f2ðp2 � p2Þ � 2b3C

0
f3ðp3 � p3Þ: ð36eÞ
Here, CI is used to characterize dilation and compaction of the isotropic component of porosity [notice that

CI does not influence the evolution of B0
e], and Cfi characterize void formation and collapse due to direc-

tional tensile failure. More specifically, constitutive equations will be specified so that the response to di-

rectional tensile failure is dissipative
r1Cf1 P 0; r2Cf2 P 0; r3Cf3 P 0; qhn0
f P 0: ð37a–dÞ
From (36b) it can be seen that the isotropic response during compaction ðCI < 0Þ at positive pressure, or

during dilation ðCI > 0Þ at negative pressure, each are dissipative. However, the response of ‘‘bulking’’
(dilation at positive pressure) is non-dissipative. In this regard it is recalled that the second law of ther-

modynamics (10) requires only that the total rate of dissipation be non-negative, not the individual com-

ponents. Physically, bulking can occur only when distortional deformation causes changes in the topology

of fragments of material. Therefore, the constitutive equation for CI should be limited so that the non-

dissipative effects of bulking never dominate the dissipative effects of plastic deformation
qhn0
d þ qhn0

I P 0: ð38Þ

Furthermore, for later convenience, the isotropic porosity /I, and directional failure porosity /f are defined

so that
_//I

1� /
¼ CI;

_//f

1� /
¼ Cf ; / ¼ /I þ /f : ð39a–cÞ
In calculating the elastic distortional deformation using the evolution equation (36e) there is no need to

introduce a tensorial measure of plastic strain. Instead, the inelasticity due to plastic deformation is in-

troduced through the rate Ap. If desired, it is possible to introduce the equivalent plastic strain ep through

the evolution equation
_eep ¼ 2
3
Dp �Dp


 �1=2
; Dp ¼ 1

2
Ap: ð40a; bÞ
Next, it is convenient to introduce a symmetric tensor D, which is interpreted as the distribution of
damage due to directional tensile failure. In particular, the damage D in a general direction n ðn � n ¼ 1Þ and
the damage Di in the principal directions of stress pi are defined by
D ¼ hD � ðn� nÞi; Di ¼ hD � ðp � p Þi ðno sum on iÞ; ð41Þ
i i
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where hxi represent the Macauley brackets
hxi ¼ 1
2
½xþ jxj
: ð42Þ
Thus, the principal directions of D represent normals to potential weak planes, with the weakest plane being

normal to the principal direction associated with the largest principal value of D. In this sense, D acts like a

structural tensor to specify the directionality of tensile failure. Moreover, D is determined by the evolution

equation
_DD ¼ WD þ DWT þ mDAD;

AD ¼ hCf1ib1

ð1þ D1ÞnD
ðp1

�
� p1Þ þ

hCf2ib2

ð1þ D2ÞnD
ðp2 � p2Þ þ

hCf3ib3

ð1þ D3ÞnD
ðp3 � p3Þ

�
; ð43Þ
where mD and nD are material constants, W is the skew-symmetric part of the velocity gradient, and AD

determines the direction of increase in damage. This is one of simplest equations that allows for directional

dependence of damage and remains properly invariant under superposed rigid body motions (SRBM).

Specifically, under SRBM the tensors
fB0
e;Ap;Av;D;ADg; ð44Þ
each obey the transformation relations of the type
B0þ
e ¼ QB0

eQ
T; ð45Þ
where a superposed (+) denotes the value of a quantity in the superposed configuration, and Q is a proper

orthogonal function of time only
Q ¼ QðtÞ; QTQ ¼ I; detðQÞ ¼ 1: ð46Þ

Also, the scalars
fJe; h;/;/I;/f ;Dig; ð47Þ

remain unaltered by SRBM.
4. Specific constitutive equations

The constitutive equation for the Helmholtz free energy is specified by (Rubin et al., 2000)
qs0ws ¼ qs0
bwws1ðJe; hÞ þ 1

2
GðJe; hÞða1 � 3Þ;

qs0
bwws1 ¼ qs0csv ðh½ � h0Þ � h lnðh=h0Þ
 � ðh � h0Þf1ðJeÞ þ f2ðJeÞ; ð48Þ
where bwws1 characterizes the main thermomechanical pressure response, csv is the specific heat at constant

volume, h0 is the reference temperature, f1 and f2 are functions of Je only, and G is the shear modulus.

Using this form, the entropy g in (21d), the specific internal energy e, and the pressure ps in (25c) become
g ¼ gs ¼ gs1 þ g0
s; gs1 ¼ � obwws1

oh
¼ qs0csv lnðh=h0Þ þ f1; qs0g

0
s ¼ � 1

2

oG
oh

ða1 � 3Þ;

e ¼ w þ hg ¼ es1 þ e0s; qs0es1 ¼ qs0ðws1 þ hgs1Þ ¼ qs0csvðh � h0Þ þ h0f1 þ f2;

qs0e
0
s ¼

1

2
G

�
� h

oG
oh

�
ða1 � 3Þ;

obww df df 1 oG

ps ¼ ps1 þ p0s; ps1ðJe; hÞ ¼ �qs0

s1

oJe
¼ ðh � h0Þ 1

dJe
� 2

dJe
; p0sðJe; a1; hÞ ¼ �

2 oJe
ða1 � 3Þ:
ð49Þ
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Moreover, the functional forms for f1 and f2 can be specified to be consistent with the usual Mie–Gruneisen

equation of state for the part ps1 of the pressure (Rubin et al., 2000)
ps1 ¼ psH þ qs0cs0½es1 � esH
; ev ¼ 1� Je; psH ¼ qs0C
2
s0ev

ð1� SevÞ2
; esH ¼ C2

s0e
2
v

2ð1� SevÞ2
; ð50Þ
where psH and esH are the pressure and internal energy associated with the Hugoniot of the solid material,

the Gruneisen gamma cs0 controls the temperature dependence of the pressure, ev is a measure of elastic

volumetric compression, and the shock velocity D has been taken to be a linear function of the particle

velocity v of the form
D ¼ Cs0 þ Sv; ð51Þ
with Cs0 and S being material constants. For simplicity, the form of the Gruneisen gamma cs has been taken

so that qscs ¼ qs0cs0 is constant. It then follows from (Rubin et al., 2000) that
f1 ¼ qs0csvcs0 lnðJeÞ; ð52Þ
and f2 is determined by quadratures. Also, the shear modulus G can be specified by a form similar to that
suggested by Steinberg et al. (1980) [see Rubin et al. (2000)]. However, for the examples considered in the

next section, G is taken to be constant
G ¼ G0: ð53Þ
The evolution equations (36d), (36e) and (43) require specification of the constitutive functions
fCp;CI;Cfig; ð54Þ
and the values mD and nD. If the functions (54) are homogeneous functions of order one in deformation rate
D and/or _hh, then the associated evolution equations predict rate-independent response. Otherwise, they

predict rate-dependent response.

Since the main objective of this work is to propose a model for directional tensile failure, the discussion

of models for plasticity (associated with Cp) and porous compaction and dilation (associated with CI) will

remain rather general. However, a specific model will be proposed for directional tensile failure (associated

with Cf i) which can be used with other specific models for Cp and CI.

A number of models for rate-independent plasticity have been proposed and a critical review of finite

plasticity theory can be found in Naghdi (1990). More specifically, for rate-independent theories with a
yield function (e.g. Green and Naghdi, 1965; Naghdi and Trapp, 1975) the value of Cp is determined by a

consistency conditions which requires the yield function to remain zero during plastic loading. Alterna-

tively, within the context of rate-dependent viscoplasticity, Cp can be specified by an overstress-type model

(e.g. Malvern, 1951; Perzyna et al., 1963) or by a unified model which combines plasticity and creep into

one inelastic deformation rate (e.g. Bodner and Partom, 1972, 1975; Bodner, 1987). In particular, Cp is

usually taken to be a function of the von-Mises stress re
r2
e ¼ 3

2
T0 � T0; ð55Þ
and hardening variables. For the examples considered later, viscoplasticity is considered using the yield

function
Cp ¼ Cp0 1

�
� Y

re

�
; Y ¼ Y ðpÞ ¼ Y0F1ðpÞ; F1ðpÞ ¼ 1þ k1hpi

1þ k2hpi
; ð56Þ
with Y being the yield strength and fCp0; Y0; k1; k2g being non-negative constants. When Cp0 becomes in-

finite, the response becomes rate-independent and is the same as that characterized by the yield function
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c ¼ 1� Y
re

6 0: ð57Þ
Also, when k1 is non-zero then the model includes pressure dependence of the yield strength which is typical

of geological materials.

A number of models for porous compaction have been presented in the literature (e.g. Herrmann, 1969;

Butkovich, 1973; Rubin et al., 1996). Additional models which include both porous compaction ðCI 6 0Þ
and porous dilation ðCI > 0Þ have also been presented (Rubin et al., 2000). However, for the example

problems considered later, these effects of porous compaction and dilation are ignored, so that
CI ¼ 0: ð58Þ
Returning to the model for directional tensile failure the functions Cfi are specified in the simple forms
Cfi ¼ Cf iðriÞ ¼ Cf0

ri � Tf i
Tf

� ��
� /f

af þ /f

�ðri þ Tf iÞ
Tf

� �
ðDiÞnf

�
ðno sum on iÞ; ð59Þ
where Cf0, Tf , af and nf are non-negative material constants. Also, the values of Tfi are given by
Tf i ¼ h1� DiiTf : ð60Þ

It then follows that (59) predicts dilation for ri greater than the tensile failure value Tf i and it predicts

compaction for ri less than the compressive failure ð�TfiÞ. Since Tf i is non-negative, these functions au-

tomatically satisfy the restrictions (37). The term /f=ðaf þ /fÞ eliminates further compaction when the

failure porosity vanishes and the term ðDiÞnf reduces compaction due to tensile failure in directions that
have not been sufficiently damaged.
5. Numerical integration procedures

The constitutive equations (48)–(53) characterize the thermoelastic response in terms of algebraic

equations that depend on the material constants
fqs0;Cs0; S; cs0; h0;G0g; ð61Þ

and the evolution equations: (24b) for J ; (36d) for /, (36e) for B0

e; (39a) for /I; and (43) for D, depend on

the function CI and on the material constants
fY0;Cp0g; fmD; nD;Cf0; af ; Tfg: ð62Þ

All of these evolution equations except for (24b) are rate-dependent.

The numerical procedure used to integrate these evolution equations starts with the initial values (at
t ¼ t1)
fJðt1Þ;B0
eðt1Þ;/Iðt1Þ;/fðt1Þ; pðt1Þ; reðt1Þ; hðt1Þg; ð63Þ
assumes that the deformation rate L is constant during the time step ½t1 6 t6 t2;Dt ¼ t2 � t1
 and suggests

the following five step procedure:

Step 1: Calculate the final values fJðt2Þ; eðt2Þg using the balance of energy based on the previous stresses
and the current rate of deformation.

Step 2: Calculate the trial values fB0�
e ; p

�; r�
eg assuming an elastic step with no effect of viscoplasticity

ðCp ¼ 0Þ, isotropic porosity ðCI ¼ 0Þ or tensile failure ðCf i ¼ 0Þ, and with no change in tempera-

ture.
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Step 3: Calculate the final value f/Iðt2Þg and the new trial values fB0��
e ; p��; r��

e g correcting for the effects of

plasticity and isotropic porosity, but neglecting tensile failure ðCfi ¼ 0Þ and neglecting change in

temperature.

Step 4: Calculate the final values
fDðt2Þ;B0
eðt2Þ;/fðt2Þg; ð64Þ
correcting for the effect of tensile failure and neglecting change in temperature.

Step 5: Calculate the final value of temperature using eðt2Þ and requiring consistency with the constitutive

equation for e at the end of the time step with updated values of all other quantities.

The order of these steps is specified partly by the rate of each of the physical processes, with the fastest

process being performed first, and partly by the structure of the computer code used to calculate the

material response. Some applications may suggest a different order of the steps in the numerical scheme.

Specifically, the velocity gradient L is assumed to be constant during the time step and Step 1 integrates
Eq. (24b) to obtain
Jðt2Þ ¼ Jðt1Þ
1þ DthD � Ii
1þ Dth�D � Ii

� �
: ð65Þ
Then, assuming adiabatic conditions ðr ¼ 0; q ¼ 0Þ, the energy equation (5a) is integrated using the pre-

vious values of the stress Tðt1Þ and the constant value of D, so that
eðt2Þ ¼ eðt1Þ þ DtTðt1Þ �D: ð66Þ

Step 2 integrates Eq. (36e) to obtain the trial elastic distortion B0�

e

B0�
e ¼ B0

eðt1Þ þ Dt LB0
e

h
þ B0

eL
T � 2

3
ðD � IÞB0

e

i
: ð67Þ
Using the values fJðt2Þ;B0�
e ; hðt1Þ;/ðt1Þ;/Iðt1Þg, the quantities fp�; r�

e ; Y
� ¼ Y ðp�Þg are determined. De-

pending on the functional form for CI in (39a) it may be necessary to iteratively solve this evolution

equation to determine the final value /Iðt2Þ. However, this procedure is not described in detail because a

specific functional form for CI is not specified.

The effects of viscoplasticity are determined by the procedures described in Rubin (1989) and Rubin and

Attia (1996). Specifically, the effects of plasticity can be determined using a radial return algorithm which

requires implicit integration of the evolution equation, such that
ð1� kÞ ¼ DtCpk; r��
e ¼ kr�

e ; B00��
e ¼ kB00�

e ; B00�
e ¼ B0�

e � 1
3
ðB0�

e � IÞI;
B00��

e ¼ B0��
e � 1

3
ðB0��

e � IÞI; ð68Þ
where k is the scale factor used to reduce the trial stress. Now, with the help of (56) it follows that
k ¼ 1 for r�
e 6 Y �; k ¼

1þ DtCp0Y �

r�e

1þ DtCp0

for r�
e > Y �: ð69Þ
Next, the procedure moves to Step 4 where the effects of tensile failure are considered. To this end, the

evolution equations (36e) and (39b) are evaluated implicitly and are written in the forms
B0
eðt2Þ ¼ B0��

e � 2b1ðt2ÞDtC0
f1ðp1 � p1Þ � 2b2ðt2ÞDtC0

f2ðp2 � p2Þ � 2b3ðt2ÞDtC0
f3ðp3 � p3Þ; ð70aÞ

D/f ¼ /fðt2Þ � /fðt1Þ ¼ ½1� /Iðt2Þ � /fðt2Þ
DtCf ; ð70bÞ

where pi are the eigenvectors of B

0��
e and b��

i are its eigenvalues so that B0��
e can be expressed in the spectral

form
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B0��
e ¼ b��

1 ðp1 � p1Þ þ b��
2 ðp2 � p2Þ þ b��

3 ðp3 � p3Þ: ð71Þ
Thus, Eq. (70a) can be rewritten as three scalar equations
Dbi ¼ biðt2Þ � b��
i ¼ �2biðt2ÞDtC0

f i ðno sum on iÞ; ð72Þ
where only two of these equations are independent since B0
e is a unimodular tensor. Furthermore, using the

constitutive equations (25), (29), (48)–(50), it follows that p and r0
i become
p ¼ ð1� /Þ psH



þ qs0cs0ðes1 � esHÞ þ p0s
�
; r0

i ¼ ð1� UÞJ�1G bi

h
� 1

3
ðB0

e � IÞ
i
: ð73Þ
Thus, assuming the stresses remain relatively small whenever tensile failure is active (Je and bi are each close

to unity), the final values of p and r0
i are approximated by
pðt2Þ � p�� þ qs0C
2
s0D/f ; r0

iðt2Þ ¼ r0��
i þ ð1� UÞJðt2Þ�1G0 Dbi



� 1

3
ðDb1 þ Db2 þ Db3Þ

�
: ð74Þ
Moreover, Eqs. (70b) and (72) are further approximated by replacing /fðt2Þ with /fðt1Þ, and biðt2Þ with

unity, on the right-hand sides of these equations to obtain
D/f ¼ 1½ � /Iðt2Þ � /fðt1Þ
DtCf ; Dbi ¼ �2DtC0
fi: ð75Þ
Thus, the principal stresses can be approximated by
riðt2Þ ¼ r��
i � f1



� /Iðt2Þ � /fðt1Þgqs0C

2
s0

�
DtCf � 2ð1

h
� UÞJðt2Þ�1G0

i
DtC0

fi; ð76Þ
which can be rewritten in the form
riðt2Þ ¼ r��
i � CijCfj;

C11 ¼ C22 ¼ C33 ¼ f1
h

� /Iðt2Þ � /fðt1Þgqs0C
2
s0 þ 4

3
ð1� UÞJðt2Þ�1G0

i
Dt > 0;

C12 ¼ C13 ¼ C23 ¼ f1
h

� /Iðt2Þ � /fðt1Þgqs0C
2
s0 � 2

3
ð1� UÞJðt2Þ�1G0

i
Dt > 0;

Cij ¼ Cji: ð77Þ
Next, the estimates D� and D�
i of D and Di, respectively, are obtained by Euler integration of the rota-

tional part of (43)
D� ¼ Dðt1Þ þ Dt½WDðt1Þ þ Dðt1ÞWT
; D�
i ¼ hD� � ðpi � piÞi ðno sum on iÞ: ð78Þ
Then, the values of Cf i in (77) are determined by evaluating the constitutive equations (59), with the help of

the final values riðt2Þ and the estimates D�
i , such that (59) can be rewritten in the forms
Cfi ¼ Cf0

riðt2Þ � Tf iðt1Þ
Tf

� ��
� /fðt1Þ
af þ /fðt1Þ

�friðt2Þ þ Tf iðt1Þg
Tf

� �
ðD�

i Þ
nf

�
ðno sum on iÞ: ð79Þ
Substituting (79) into (77) yields an equation which can be written in the matrix form
Aijrjðt2Þ ¼ Bi: ð80Þ

Specifically, since each of Cf i can be negative, zero, or positive, there are 27 combinations of the matrix Aij

and the vector Bi. To record these values it is convenient to introduce the auxiliary variables Ii by the
equations
Ii ¼ �1 for Cfi < 0; Ii ¼ 0 for Cf i ¼ 0; Ii ¼ 1 for Cf i > 0; ð81Þ
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so that
Aij ¼ dij þ h�IjiCij
Cf0

Tf

/f

af þ /f

ðD�
j Þ

nf þ hIjiCij
Cf0

Tf
ðno sum on jÞ;

Bi ¼ r��
i þ

X3

j¼1

�
�h�IjiCij

Cf0

Tf

/f

af þ /f

ðD�
j Þ

nfTfj þ hIjiCij
Cf0

Tf
Tfj

�
;

ð82Þ
where dij is the Kronecker delta symbol. The solution of (80) is obtained by guessing a branch of the so-

lution (based on the values of Cf i associated with estimates of the stresses ri), then using the appropriate

values of Aij and Bi and solving (80) for the updated ri. The solution is considered to be correct if the

updated values of Cf i correspond to the same branch that is being checked.
At present it is not known how to analytically analyze this solution procedure to determine if the

solution is unique and, if so, to determine the optimal path to the solution. Consequently, the solu-

tion procedure was tested numerically by specifying values of r��
i as random positions in a cube

½�10Tf 6 r��
i 6 10Tf 
. The results of these calculations with one million random values indicate that about

70% of the guesses based on r��
i yielded the correct solution branch. The correct solution was obtained by

the second guess in about 10–20% of the trials. Occasionally, either a few multiple solutions are found, or

an infinite loop occurred with the solution bouncing between a few trial solutions because of floating point

inaccuracies. However, for each of these cases the multiple solutions or the trial solutions were close to each
other (and were often near the boundaries of expansion and contraction). Consequently, it was decided to

terminate the solution search either when a solution is found or after a maximum of seven iterations (which

exceeds the typical number of iterations required in the random calculations).

Once the solution of (80) is obtained, the updated values of Cfi are used in (35) to determine Cf and C0
f i.

Specifically, the solutions of (72) and (74) are modified to obtain
bi ¼ b��
i

1þ 2Dth�C0
f ii

1þ 2DthC0
fii

" #
; biðt2Þ ¼ b1b2b3


 ��1=3
bi; ðno sum on iÞ;

B0
eðt2Þ ¼ b1ðt2Þp1 � p1 þ b2ðt2Þp2 � p2 þ b3ðt2Þp3 � p3;

/fðt2Þ ¼ 1

�
� /Iðt2Þ � f1� /fðt1Þ � /Iðt2Þg

1þ Dth�Cfi
1þ DthCfi

� ��
;

ð83Þ
which ensure that biðt2Þ remain positive, B0
eðt2Þ remains a unimodular tensor, /fðt2Þ is non-negative and

/ðt2Þ is smaller than unity. Furthermore, the final value Dðt2Þ of the damage tensor is obtained by using the

updated values of bi and Cf i in the formula
Dðt2Þ ¼ D� þ DtmD
hCf1ib1ðt2Þ
ð1þ D�

1Þ
2
ðp1

"
� p1Þ þ

hCf2ib2ðt2Þ
ð1þ D�

2Þ
2
ðp2 � p2Þ þ

hCf3ib3ðt2Þ
ð1þ D�

3Þ
2
ðp3 � p3Þ

#
: ð84Þ
From (49) the constitutive equation for the internal energy e takes the general form
e ¼ beeðJ ; h;/; a1Þ: ð85Þ
Thus, the final temperature hðt2Þ associated with Step 5 is determined by using the value eðt2Þ obtained in

(66) and solving the equation
beeðJðt2Þ; hðt2Þ;/ðt2Þ; a1ðt2ÞÞ ¼ eðt2Þ: ð86Þ
When G is a function of temperature, this equation is a non-linear function of hðt2Þ which must be solved
iteratively. However, for constant G (53), the constitutive equation (49) for e is a linear function of h, which
can be solved to obtain
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hðt2Þ ¼ h0 þ
1

qs0csv
qs0eðt2Þ

�
� h0f1ðJeÞ � f2ðJeÞ þ

1

2
G0ða1 � 3Þ

�
; ð87Þ
with Je and a1 being the updated values associated with t ¼ t2.
6. Examples

The objective of the example problems considered in this section is to demonstrate typical features of the

proposed model and not to match any particular set of data for a specific material. Specifically, in order to
examine the response of this model it is convenient to consider the response to homogeneous deformation

which is characterized by specifying a loading history for the velocity gradient L. Moreover, the defor-

mation gradient F is determined by integrating the evolution equation
_FF ¼ LF; ð88Þ

and the Lagrangian strain E is defined by
E ¼ 1
2
ðFTF� IÞ: ð89Þ
For the examples considered below, the evolution equations (15b), (24b), (39a,b), (40a), (43) and (88),

are integrated subject to the initial conditions
J ¼ 1; B0
e ¼ I; /I ¼ 0; /f ¼ 0; D ¼ 0; F ¼ I; ep ¼ 0: ð90Þ
Thus, since CI ¼ 0, the porosity /I ¼ 0 and the total porosity / ¼ /f . Furthermore, let fLij;Eij; Tij;Dijg be

the components of the tensors fL;E;T;Dg, respectively, relative to the fixed rectangular Cartesian base

vectors ei.

The loading history is specified by a combination of the following deformation paths:

Uniaxial strain in the e1 direction
L ¼ De1 � e1; ð91Þ

Uniaxial strain in the e2 direction
L ¼ De2 � e2; ð92Þ

Isochoric deformation in the e1–e2 plane
L ¼ Dffiffiffi
2

p ½e1 � e1 � e2 � e2
; ð93Þ
Isochoric simple shear in the e1–e2 plane
L ¼
ffiffiffi
2

p
De1 � e2; ð94Þ
Pure dilation
L ¼ Dffiffiffi
3

p I; ð95Þ
where the rates of deformation have been normalized to have the same magnitude of the deformation rate

D. Unless otherwise stated, the value of D is specified by
D ¼ �10 s�1; ð96Þ

which is characteristic of mild shock loading in large rock structures.
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Typical material properties of hard granite are obtained from Handin (1966), and Schock et al. (1973)

and specified in Tables 1–3 and are used in the following examples. For simplicity, the Gruneissen gamma

cs0 is specified to be zero and no values are specified for csv and h0, since temperature is not needed for the

calculations. Also, the value of Cp0 is taken to be infinity in order to obtain rate-independent plastic re-
sponse.

For these material parameters, tensile failure can occur for low pressures (i.e. near free surfaces) but not

for higher pressures. Due to the complicated loading histories being presented it is convenient to exhibit all

quantities as functions of time. For each of the loading histories, figures (a) show the strains, figures (b)

show the stresses, figures (c) show the porosity and plastic strains, and figures (d) show maximum principal

value Dmax and minimum of principal value Dmin of D in the e1–e2 plane as well as its component D33. For

some of the loadings figures (e) show the angle d characterizing the principal direction pmax associated

with Dmax
Table

Typica

U
qs0 (

Cs0

S
cs0
csv (

h0 (K

G0 (

Table

Typica

Cp0

Y0 (G

k1 (G

k2 (G

Table

Materi

Cf0 (

af
Tf (M
nf
mD (

nD
pmax ¼ cos de1 þ sin de2: ð97Þ
Fig. 1 shows the response to a cycle of uniaxial extension and contraction in the e1 direction, followed by a

cycle of uniaxial extension and contraction in the e2 direction. For this loading the angle d equals zero so it

is not plotted. During the first extension in the e1 direction, tensile failure occurs in T11 and the values of T22
1

l material properties for the thermoelastic response of granite

Value Equation

0 (23a)

Mg/m3) 2.67 (23a)

(km/s) 4.20 (50)

1.50 (50)

0.0 (50)

J/Kg/K) – (48)

) – (48)

GPa) 28.80 (53)

2

l material properties for the plastic response of granite

Value Equation

(s�1) 1 (56)

Pa) 0.10 (56)

Pa�1) 17.0 (56)

Pa�1) 0.33 (56)

3

al properties for tensile failure

Value Equation

s�1) 103 (59)

10�6 (59)

Pa) 10.0 (59)

3.0 (59)

s�1) 103 (43)

2.0 (43)
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Fig. 1. Response to cycles of uniaxial strain.
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and T33 are equal. Porosity opens during extension and closes during contraction (with almost zero stress

once damage is complete). During the first extension in the e2 direction tensile failure occurs in T22 at the
virgin tensile strength since this direction was not damaged during the first part of the cycle of loading (see

Fig. 1d). Also, since the e1 direction has already been damaged, the value of T11 remains near zero during
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this extension, whereas the value of T33 becomes tensile. As T22 fails, porosity again opens during extension

and closes during contraction (with almost zero stress once damage is complete).

Fig. 2 shows the response to a cycle of isochoric deformation with simultaneous deformation occurring

in both the e1 and e2 directions. Specifically, the first part of the loading is a cycle with extension (E11 P 0) in
e1 direction and contraction (E22 6 0) in the e2 direction, and the second part of the loading, is a cycle of

with contraction (E11 6 0) in the e1 direction and extension (E22 P 0) in the e2 direction. Fig. 2c shows an

expanded view of the tensile portion of the response shown in Fig. 2b. The main response of directional

failure is again captured with tensile failure occurring in the e1 direction during the first part of the loading

and tensile failure occurring in the e2 direction during the second part of the loading. The main differences

between the first and second parts of the loading can be seen in Fig. 2b and d where it is observed that

during the first part of the loading there is no damage associated with the e2 direction so that substantial

compression can occur (T22 < 0 in Fig. 2b) in that direction. This is accompanied with porosity change (Fig.
2d) required to limit the tensile stress T11. In contrast, during the second part of the loading, the e1 direction

has been pre-damaged (Fig. 2e) so the constitutive equations (30), (58)–(60) allow inelastic compression in

this direction whenever /f is non-zero. Moreover, during this part of the loading inelastic extension occurs

in the e1 direction. The net effect is to maintain the porosity near zero. In other words, when the material

has been fully damaged in both the e1 and e2 directions, the material flows with small deviatoric stresses.

This is similar to what would be expected in a granular material with no external pressure.

Fig. 3 shows the response to large deformation simple shear. It can be seen from Fig. 3e that damage

initiates in the d ¼ 45� direction and porosity grows (Fig. 3c). This causes the pressure to increase so the
stress field shown in Fig. 3b is nearly equivalent to uniaxial compression in the direction d ¼ 135�. It can be

seen from Fig. 3c that tensile failure and plastic flow occur simultaneously during this process. Fig. 3e
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Fig. 3. Response to simple shear.
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Fig. 4. Response to pure dilation (compression) followed by simple shear.
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shows that the damage tensor rotates with d decreasing. Eventually enough damage accumulates that Dmin

increases (Fig. 3d) and causes compressive void strain in the p2 direction with porosity recompression (Fig.
3c) and decrease in pressure (Fig. 3b). After this point the material continues to flow with near zero stresses

in the e1–e2 plane and compressive T33 stress (Fig. 3b). Furthermore, it is noted that D33 remains zero for

this deformation and the values of Dmin is small enough that the damage is plotted using a log scale in

Fig. 3d.

Fig. 4 shows the response to a small pure dilation (compression) followed by large deformation simple

shear. For this problem the pressure is high enough that the material flows plastically with no tensile failure.

This response would be typical deep enough under ground where the confining stress in the rock is high.
7. Conclusions

A general theoretical structure has been developed to model directional tensile failure with void opening

and closing. The resulting theory is hyperelastic in the sense that the stress is determined by derivatives of
the Helmholtz free energy, and the theory is thermodynamically consistent and properly invariant under

superposed rigid body motions. Specific constitutive equations for tensile failure have been proposed which

satisfy the second law of thermodynamics and can augment rather general constitutive equations for porous

compaction and dilation, as characterized by the evolution equation (39a). Moreover, although the model

developed here has focused on the phenomena (P3) associated with the inelastic effects of the rate of void

opening and closing due to tensile failure, it is possible to include the phenomena (P2) by using a scalar

measure of damage to degrade the shear modulus. However, degradation of the non-linear thermome-

chanical response to dilatation is more difficult.
A numerical algorithm has been developed and the example problems considered in Section 6 show that

the model predicts reasonable results to a variety of loading histories. The damage tensor D that is in-

troduced in this model can be advected using standard methods in Arbitrary Lagrangian Eulerian (ALE)

computer codes. Moreover, this constitutive model has been implemented into a general Adaptive Mesh

Refinement (AMR) computer code GEODYN developed at Lawrence Livermore Laboratory and simu-

lations of complicated shock loading problems are currently being studied.
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