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Abstract

The main objective of this paper is to develop a continuum model for directional tensile failure that can simulate
weakening and void formation due to tensile failure. Directionality in the model allows simulation of weakening to
tension applied in one direction, without weakening to subsequent tension applied in perpendicular directions. The
model is developed within the context of a properly invariant non-linear thermomechanical theory. Specifically, it is
shown how the model can be combined with general constitutive equations for porous compaction and dilation, as well
as viscoplasticity. The thermoelastic response is hyperelastic, with the stress being determined by derivatives of the
Helmbholtz free energy, and the material is considered to be elastically isotropic. In particular, it is assumed that the rate
of inelasticity due to tensile failure is coaxial with the tensor measure of elastic deformation (and hence stress). This
causes the rate of dissipation to take a particularly simple form which can be shown to satisfy the second law of
thermodynamics. A numerical procedure for integrating these evolution equations is proposed and a number of ex-
amples are considered to explore the response of the model to different loading histories.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Constitutive models for tensile failure and damage typically include one or more of the following
phenomena:

(P1) a reduced yield strength;
(P2) a reduced elastic modulus; and
(P3) an evolving void strain.

These models can remain isotropic or they can introduce anisotropic damage.
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Continuum damage mechanics (e.g. Curran et al., 1987; Krajcinovic, 1996) generalizes the early work
of Kachanov (1958) for rupture under creep conditions. The simplest continuum damage model in-
cludes the phenomena (P1) by introducing an evolution equation for a scalar measure of damage
that reduces the magnitude of the yield strength. Another example is the Gurson model for void
growth (Gurson, 1977) which introduces the effects of porosity and pressure on the yield surface in ductile
metals.

More complicated models include the phenomena (P2) and introduce evolution equations for scalar and
tensorial measures of damage can be used to modify the elastic stiffness of the material (e.g. Carol et al.,
2001). However, when the elastic response is modified by multiple scalars or tensors, the notion of damage
as a weakening of the material is not so clear (Elata and Rubin, 1994). Also, it is necessary to ensure that
the second law of thermodynamics is satisfied, with the damage process being dissipative.

Using linear elastic fracture mechanics to characterize effective properties of materials containing
multiple interacting idealized cracks has also been a very active research area, and an overview of this field
can be found in (Nemat-Nasser and Hori, 1993; Kachanov et al., 1994). This approach is successful for
linear elastic problems but generalizations for finite deformation are not straight-forward, especially when
it is necessary to model the full non-linear thermomechanical coupling that is active in shock waves.
Usually, attempts are made to introduce non-linear phenomenological evolution equations with coefficients
and functions that incorporate features of the results of fracture mechanics (e.g. Rajendran et al., 1989). If
the cracks are randomly oriented and the crack density is high then the elastic response remains reasonably
isotropic. Within this framework, it is possible to develop constitutive equations for the shock response of
brittle materials (e.g. Bar-on et al., 2003) which include the phenomena (P2) and (P3) by introducing a void
strain through an evolution equation for porosity.

A comprehensive model for porous elastic—viscoplastic material with tensile failure that is applicable to
shock problems is recorded in (Rubin et al., 2000). In this model and evolution equation for porosity is used
to introduce voids and limit the amount tensile pressure. Also, the Lode angle is used to modify the yield
strength to exhibit the typical characteristic of a brittle material that it fails at a much lower stress in tension
than it does in compression. Moreover, since the Lode angle is an isotropic invariant of Cauchy stress these
constitutive equations only model isotropic damage.

Menzel and Steinmann (2001) have recently developed a model for anisotropic continuum damage
mechanics at large strains. This formulation introduces a strain energy function that depends on invariants
of total strain relative to a structural tensor. Moreover, this structural tensor represents damage and is
determined by an evolution equation of the type considered by Betten (1985). In their general forms, these
constitutive equations are capable of modeling the phenomena (P2) and (P3).

The main objective of a constitutive model for directional tensile failure, like the one developed in this
paper, is to model the fact that although a brittle material (like rock) can fail in one direction it may retain
virgin strength to tensile failure in a perpendicular direction. From the mathematical point of view it is
always possible to propose evolution equations for the internal state variables that ensure maximum dis-
sipation. However, such constitutive assumption may be difficult to interpret physically. Therefore, a major
challenge in the development of a theory of directional tensile failure is to develop a theoretical structure
that is amenable to the analysis of physically based constitutive assumptions and is amenable to the de-
velopment of a robust integration scheme.

The model developed in this paper focuses mainly on the phenomena (P3). Porosity is used as an iso-
tropic measure of volumetric void strain and its evolution is influenced by tensile failure [see (39b)]. Fur-
thermore, instead of introducing a void strain tensor, the inelastic effects of directional void opening and
closing are modeled by introducing their effects on the rate of evolution of elastic deformation [see (36a)].
Specifically, it is assumed that the rate of inelasticity due to tensile failure is coaxial with the tensor measure
of elastic deformation (and hence stress). This causes the rate of dissipation to take a particularly simple
form [see (31)] which can be analyzed easily.
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An outline of this paper is as follows. Section 2 briefly reviews the basic equations of continuum
thermodynamics, Section 3 introduces the general constitutive structure and Section 4 proposes specific
constitutive equations. Section 5 presents details of the numerical integration scheme, Section 6 discusses a
number of example problems which demonstrate the predictions of the model, and Section 7 presents
conclusions.

Throughout the paper bold faced symbols are used to denote tensors and I denotes the second order unit
tensor. Also, a-b denotes the usual scalar product of two vectors a, b and A - B = tr(AB") denotes the
scalar product of two second order tensors A, B. Moreover, B' denotes the transpose of B, trA = A - I
denotes the trace operation, det(A) denotes the determinant of the tensor A, and the symbol ® denotes the
tensor product operator.

2. Basic equations

By way of background it is recalled that X denotes the location of a material point in a fixed reference
configuration, x denotes the location of the same material point in the deformed present configuration at
time ¢, v = X denotes the absolute velocity of the material point, and L = 0v/0x denotes the velocity gra-
dient. Here, and throughout the text a superposed dot is used to denote material time differentiation
holding X fixed.

The constitutive equations are developed using the thermodynamical procedures proposed by Green and
Naghdi (1977, 1978). Within this context, the usual laws of conservation of mass and balances of linear
momentum, angular momentum and energy are supplemented by a balance of entropy which in local form
is written as

pin = p(s + &) —divp, (1)

where p is the mass per unit present volume, 7 is the specific (per unit mass) entropy, s is the specific external
rate of supply of entropy, ¢ is the specific rate of internal production of entropy, p is the entropy flux per
unit present surface area, and div denotes the divergence operator in the present position x. Also, it is
recalled that s and p are related to the absolute temperature 6, the specific external rate of heat supply r, and
the heat flux vector q that appear in the energy equation by the expressions

r q
s=5 P=y 2)
In general, & can be separated into two parts
pO& = —p- g+ p0Z', 3)

where g = 00/0x is the temperature gradient with respect to the present position. One part (—p - g) is re-
lated to the entropy production due to heat conduction and another part (p0&) is related to the entropy
production due to material dissipation (Rubin, 1986).

Using (1)—(3) the rate of heat supplied to the body can be written in the form

pr — divq = pbi — pb¢e'. 4)
Thus, the local form of the balance of energy can be expressed in the equivalent forms

pé=pr—divq+T-D, p0& =T -D — p(y + n6), (5a,b)
where the specific Helmholtz free energy  and the specific internal energy ¢ are related by the expression

Y=e—0On (6)

Also, T is the Cauchy stress tensor and D is the symmetric part of the velocity gradient L.
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Constitutive assumptions for the quantities

{¥,n,e,T,p, ¢}, (7)

are restricted by the usual invariance conditions under superposed rigid body motions and by the re-
quirements that the balance of angular momentum

T =T, (8)
and the balance of energy (5b) be satisfied for all thermomechanical processes. Furthermore, these con-

stitutive equations are required to satisfy statements of the second law of thermodynamics with include the
condition that heat flows from hot to cold

—p-g>0 forg=#0, 9)
and the condition that the material dissipation is non-negative
p0¢ = 0. (10)

3. Constitutive equations

In contrast with standard approaches to plasticity which introduce measures of inelastic deformation
through evolution equations, the approach taken here is motivated by the works of Eckart (1948) and
Leonov (1976) who propose evolution equations directly for elastic deformation measures. Additional
physical reasons for abandoning measures of plastic deformation can be found in (Rubin, 1994, 1996,
2001). Specifically, within the context of the proposed model it is convenient to introduce a measure of
elastic deformation as a symmetric, invertible, positive definite tensor B, which is determined by integrating
the evolution equation

B. = LB, + B.L" — J>A, (11)
where J, is a pure measure of elastic dilatation
J? = det(B.). (12)

The tensor A includes the inelastic effects of the rate of plastic deformation as well as that due to directional
tensile failure. Moreover, with the help of the work of Flory (1961), it is possible to define B, as a uni-
modular tensor which is a pure measure of elastic distortional deformation

B, =J, "B,  det(B) =1. (13)
Also, using the fact that

w = det(B.)B, "' - B., (14)

it can be shown that J. and B, are determined by the evolution equations
E—D 1—1a.B- (15a)
Jo 20 e

B = LB, + BIL" — (DB, - [A - {(A-B[)B,]. (15b)
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Here, the Helmholtz free energy ¢ is assumed to be a function of the variables
{Je, B, 0}. (16)

However, since iy must remain unaltered under superposed rigid body motions (SRBM) it follows that it
can be a function of B, only through its two independent invariants

=B, 1, o =B, -B. (17)
For simplicity, y is taken to be independent of «, so that it takes the form
¥ =(Je,0n,0). (18)
Using this expression, the reduced form of the balance of energy (5b) yields the equation

! % %// o alﬁ 1 alﬁ -1
p@cf[T plegy 1 =207, B] D p[ 69}9+ JaJ[A Be}

+ sz [A—%( BQI)BQ} 1, (19)
where B! is the deviatoric part of B,

B! =B, — (B, -I)L (20)

Sufficient conditions for (19) to be satisfied for all thermomechanical processes allow the stress and the

entropy to be given in the hyperelastic forms

@lﬁ Glﬁ al//

T=-pl+T = T =2p B” = 2la—
where p is the pressure and T’ is the deviatoric part of the stress. Since these forms cause the deviatoric
stress T' to vanish when B, =1, the value of B, is known in any stress-free state. Moreover, the rate of
dissipation becomes

1 oy _ oy 1 _
08 = ple= (A B A-5(A-BB T 2

pOS" =5 pJe7 7. N 3 . )Be (22)

For porous materials it is common to introduce the current value ¢ of porosity, its reference value @,
and the reference density p,, of the solid matrix, such that

1—
Je = {%]‘L po=(1=P)pg,  p=(1-¢). " py, (23a—c)
Jo=J.|D-1— 4 (23d)
1—¢|
where use has been made of the conservation of mass and the rate of change of the total dilatation J
pJ =p,, J=JD-L (24a,b)

Then, the constitutive equations (21) for stress can be rewritten in the more common forms (Carroll and
Holt, 1972)

=(1-9¢)p, T =(1-9¢)T, (25a,b)
a / — a "
_Pso%a Ts :2Je ! Pso alpB (ZSC,d)

where p; and T, are the pressure and deviatoric stress of the solid matrix, respectively.



4304 M. B. Rubin, I. Lomov | International Journal of Solids and Structures 40 (2003 ) 42994318

Next, the inelastic deformation tensor A is separated into a part A, (Rubin and Attia, 1996) associated
with viscoplasticity and a part A, associated with void formation (due to porosity and cracks) due to tensile

failure
3
B —{ —— I, 26
WERH "

where the scalar I', requires a constitutive equation. Thus, the rate of dissipation (22) can be written in the
alternative form

A=A, +A, A, =T,

I / o alﬂ , 9

E=Gle 0% =pgiTy lBe I {Bg-l.l} 7 (27a,b)
I 1 alﬂ /—1 alﬁ 1 /—1 /

p0g, = 3 plezy (A B P8 [AV —g(AV-Be )BT, (27c)

where &, is related to the dissipation of plastic distortional deformation and &, is related to the dissipation
of void formation.
In order to propose a constitutive equation for A, it is convenient to define p, as the orthonormal right-
handed set of eigenvectors of B., which are ordered so that
, 1
B.=Bi(pr@p1) + AP @p2) + B3(p3 @P3), Bi === 8.5, > 0. (28)
1P2

Thus, in view of the constitutive equations (21), the stress T can be written in its spectral form

T=o(p®p)+0p,@p,) +03(p;@p;), 01 =02=03,  01=—p+oa,

o, =2p o [ﬁi - %(B’e : I)} ) (29)

0oy

where o; are the ordered principal stresses. Next, it is assumed that the rate of void formation tends to
reduce these principal stresses so that A, is specified in the form

A, =2[I0Bi(pr @p1) + Tafa(pr @ py) + T'iafs(ps @ ps)ls (30)

where the scalar functions I'y; require constitutive equations. Thus, with the help of (21), (28)—(30), the rate
of dissipation (27¢) reduces to

p0E = 6,y + 021y + 03T 3. 1)

Moreover, comparison of (15a) with (23d) and use of (26) and (30) indicates that the rate of change of
porosity is given in the simple form

é 1

W:EA.B’;1 =T+ Ty + . (32)
Next, using the spectral representation (28) it can be shown that
, 9
B, -1- 1 = 0. (33)

Moreover, for the model under consideration, both 0y /0« and I', are each non-negative so plastic de-
formation is dissipative
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p0&, =0 for{S—Z;OandFPZO}. (34)

For later convenience, the auxiliary variables I'r and I'f; are defined so that I'y; can be written in the forms

r I
Fi=5+Tw Tt=Ta+To+Tn,  Th=Tu—3 (35)
Then, with the help of (26), (28) and (30), the dissipation (31), the rate of change of porosity (32), and the

rate of elastic distortional deformation (15b) can be rewritten in the forms

& =&8+¢&, p0& = —pl7, p0& = o1y + 02I'p + 030, (36a—)
¢ _rr (36d)

1—¢ ’

B:e =LB,+BL" - WD-DB, — A, — 26, (p, @p;) — 2,75 (p, @ y) — 2B35(p; @ ps). (36¢)

Here, I't is used to characterize dilation and compaction of the isotropic component of porosity [notice that
I't does not influence the evolution of B.], and I'y; characterize void formation and collapse due to direc-
tional tensile failure. More specifically, constitutive equations will be specified so that the response to di-
rectional tensile failure is dissipative

GIFH = O, O'zFfz = 0, O'3Ff3 = 07 p@élf = 0. (37a—d)

From (36b) it can be seen that the isotropic response during compaction (I'y < 0) at positive pressure, or
during dilation (I'y > 0) at negative pressure, each are dissipative. However, the response of “bulking”
(dilation at positive pressure) is non-dissipative. In this regard it is recalled that the second law of ther-
modynamics (10) requires only that the total rate of dissipation be non-negative, not the individual com-
ponents. Physically, bulking can occur only when distortional deformation causes changes in the topology
of fragments of material. Therefore, the constitutive equation for I'; should be limited so that the non-
dissipative effects of bulking never dominate the dissipative effects of plastic deformation

pO&; + p0&; = 0. (38)
Furthermore, for later convenience, the isotropic porosity ¢;, and directional failure porosity ¢, are defined
so that

o br
1-¢ 1—¢
In calculating the elastic distortional deformation using the evolution equation (36e) there is no need to
introduce a tensorial measure of plastic strain. Instead, the inelasticity due to plastic deformation is in-

troduced through the rate A,. If desired, it is possible to introduce the equivalent plastic strain ¢, through
the evolution equation

=1y, =T, b =1+ o (39a—c)

. 12
& = [{Dp - Dy] 7, D, =A;. (40a, b)

Next, it is convenient to introduce a symmetric tensor A, which is interpreted as the distribution of
damage due to directional tensile failure. In particular, the damage 4 in a general direction n (n-n = 1) and
the damage 4; in the principal directions of stress p; are defined by

A={(A-(n®n)), A;=(A-(p;®p;)) (nosum on i), (41)
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where (x) represent the Macauley brackets
() = 3l + Ix[]. (42)

Thus, the principal directions of A represent normals to potential weak planes, with the weakest plane being
normal to the principal direction associated with the largest principal value of A. In this sense, A acts like a
structural tensor to specify the directionality of tensile failure. Moreover, A is determined by the evolution
equation

A=WA+AWT + m A,

[ By (I'n)p, (I's)Bs
Ay = q —|—fA1_)nA (pr®p) +(1_:2T)”/1(p2 ®Pp,) Jr(l—fw(p} @p;)|, (43)

where m, and n, are material constants, W is the skew-symmetric part of the velocity gradient, and A,

determines the direction of increase in damage. This is one of simplest equations that allows for directional

dependence of damage and remains properly invariant under superposed rigid body motions (SRBM).
Specifically, under SRBM the tensors

{B/eaApaAV7A7AA}7 (44)
each obey the transformation relations of the type
B = QB.Q', (45)

where a superposed (+) denotes the value of a quantity in the superposed configuration, and Q is a proper
orthogonal function of time only

Q=Q(), Q'Q=I det(Q)=1. (46)
Also, the scalars
{Jeaea(ﬁa(blad)ﬁé‘i}a (47)

remain unaltered by SRBM.

4. Specific constitutive equations

The constitutive equation for the Helmholtz free energy is specified by (Rubin et al., 2000)

Py = Pyt (Jes 0) + 1G(Je, 0) (o — 3),
oW = Pacsr[(0 — 00) — 01n(0/05)] — (0 — 00)11(Je) + fo(Je), (48)

where l/A/S, characterizes the main thermomechanical pressure response, ¢y, is the specific heat at constant
volume, 0, is the reference temperature, f; and f, are functions of J, only, and G is the shear modulus.
Using this form, the entropy 7 in (21d), the specific internal energy ¢, and the pressure p; in (25¢) become

1 0G

oy :
Vol pacan(0/00) + i, pa = 5 90 (1 —3),

n=ns=ng +n, N = —

&= l// + 07] =& + 8;7 Psoés1 = psO(lpsl + 07751) = psOCSV(H - 00) + Hoﬁ +ﬁ7

, 1 oG
Psofs =5 [G - 9@} (o1 = 3),
_ / _ a‘,/;sl . dfi  dfa , 110G
Ps = Ps1 +ps7 pSl(Je76) = —Psxo aJe - (0 00) dJe dJeﬂ ps(‘]eaalvg) - 2 a.]e (al 3)

(49)
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Moreover, the functional forms for f; and £, can be specified to be consistent with the usual Mie—Gruneisen
equation of state for the part ps; of the pressure (Rubin et al., 2000)
2 2 2
Pso CsOeV CsOev
Pst = Psu T+ PsoVs0l8s1 — &sHl; ey =1-1, pH=", EH = 7 50
S S s0 SO[S S. ] v S S (I—Sev)z S 2(1—S€V)2 ( )
where psy and gy are the pressure and internal energy associated with the Hugoniot of the solid material,
the Gruneisen gamma 7y, controls the temperature dependence of the pressure, e, is a measure of elastic
volumetric compression, and the shock velocity D has been taken to be a linear function of the particle
velocity v of the form

D = Cy + Sv, (51)

with Cy and S being material constants. For simplicity, the form of the Gruneisen gamma 7y, has been taken
so that p,y, = pyVs 1S constant. It then follows from (Rubin et al., 2000) that

fl = PsoCsv¥s0 ln(‘]e)’ (52)

and f> is determined by quadratures. Also, the shear modulus G can be specified by a form similar to that
suggested by Steinberg et al. (1980) [see Rubin et al. (2000)]. However, for the examples considered in the
next section, G is taken to be constant

G = Gy. (53)
The evolution equations (36d), (36e) and (43) require specification of the constitutive functions
{varlvrfi}a (54)

and the values m, and ny4. If the functions (54) are homogeneous functions of order one in deformation rate
D and/or 6, then the associated evolution equations predict rate-independent response. Otherwise, they
predict rate-dependent response.

Since the main objective of this work is to propose a model for directional tensile failure, the discussion
of models for plasticity (associated with I',) and porous compaction and dilation (associated with I'y) will
remain rather general. However, a specific model will be proposed for directional tensile failure (associated
with I';) which can be used with other specific models for I', and I'.

A number of models for rate-independent plasticity have been proposed and a critical review of finite
plasticity theory can be found in Naghdi (1990). More specifically, for rate-independent theories with a
yield function (e.g. Green and Naghdi, 1965; Naghdi and Trapp, 1975) the value of I', is determined by a
consistency conditions which requires the yield function to remain zero during plastic loading. Alterna-
tively, within the context of rate-dependent viscoplasticity, I', can be specified by an overstress-type model
(e.g. Malvern, 1951; Perzyna et al., 1963) or by a unified model which combines plasticity and creep into
one inelastic deformation rate (e.g. Bodner and Partom, 1972, 1975; Bodner, 1987). In particular, I, is
usually taken to be a function of the von-Mises stress g,

‘72 = %T/ T, (55)

and hardening variables. For the examples considered later, viscoplasticity is considered using the yield
function

Y ki(p)
I'y=Tyn(l—— Y =Y(p) = LHF Fp) =14+—"—— 56
p= (1), D)= BAG). A =1+ L (56)
with Y being the yield strength and {I'y, Yo, k1, k»} being non-negative constants. When Iy, becomes in-
finite, the response becomes rate-independent and is the same as that characterized by the yield function
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Y
y=1-—
Je

<0. (57)
Also, when k; is non-zero then the model includes pressure dependence of the yield strength which is typical
of geological materials.

A number of models for porous compaction have been presented in the literature (e.g. Herrmann, 1969;
Butkovich, 1973; Rubin et al., 1996). Additional models which include both porous compaction (I'1 <0)
and porous dilation (I't > 0) have also been presented (Rubin et al., 2000). However, for the example
problems considered later, these effects of porous compaction and dilation are ignored, so that

I =0. (58)

Returning to the model for directional tensile failure the functions I'y; are specified in the simple forms

o — Ty fon —(0; + Ti) n .
Fi = F,‘ i) — I - Ai ! ’ 59
£ ri(0:) 0 K T > . ¢f< T (4;) (no sum on i) (59)
where Iy, Tt, a; and n; are non-negative material constants. Also, the values of Tj; are given by
Ti= (1 — A)Tr. (60)

It then follows that (59) predicts dilation for o; greater than the tensile failure value 73; and it predicts
compaction for o; less than the compressive failure (—7;;). Since 7f; is non-negative, these functions au-
tomatically satisfy the restrictions (37). The term ¢./(ar + ¢;) eliminates further compaction when the
failure porosity vanishes and the term (4;)" reduces compaction due to tensile failure in directions that
have not been sufficiently damaged.

5. Numerical integration procedures

The constitutive equations (48)—(53) characterize the thermoelastic response in terms of algebraic
equations that depend on the material constants

{pSO)CSO7S)VSO7HO7GO}7 (61)

and the evolution equations: (24b) for J; (36d) for ¢, (36¢) for B; (39a) for ¢; and (43) for A, depend on
the function I'1 and on the material constants

{YOvFP0}7 {mAanAarﬁ)aafan}' (62)

All of these evolution equations except for (24b) are rate-dependent.
The numerical procedure used to integrate these evolution equations starts with the initial values (at
t=1t)

{J(0), B (1), i(1r), de(1r), p(1r), 0e(11), 0(11) }, (63)

assumes that the deformation rate L is constant during the time step [t <t < t; At = t, — #;] and suggests
the following five step procedure:

Step 1: Calculate the final values {J (), ¢(#,)} using the balance of energy based on the previous stresses
and the current rate of deformation.

Step 2: Calculate the trial values {B.,p*, ¢’} assuming an elastic step with no effect of viscoplasticity
(I's = 0), isotropic porosity (I'1 = 0) or tensile failure (I'; = 0), and with no change in tempera-
ture.
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Step 3. Calculate the final value {¢;(z,)} and the new trial values {B.™", p**, 6"} correcting for the effects of
plasticity and isotropic porosity, but neglecting tensile failure (I'r; = 0) and neglecting change in
temperature.

Step 4: Calculate the final values

{A(n), B,(12), $r(12)}, (64)

correcting for the effect of tensile failure and neglecting change in temperature.
Step 5: Calculate the final value of temperature using &(#,) and requiring consistency with the constitutive
equation for ¢ at the end of the time step with updated values of all other quantities.

The order of these steps is specified partly by the rate of each of the physical processes, with the fastest
process being performed first, and partly by the structure of the computer code used to calculate the
material response. Some applications may suggest a different order of the steps in the numerical scheme.

Specifically, the velocity gradient L is assumed to be constant during the time step and Step 1 integrates
Eq. (24b) to obtain

1+ A«D-T) } (65)

J(t) =J(n) [1 TA(-DI)

Then, assuming adiabatic conditions (» = 0,q = 0), the energy equation (5a) is integrated using the pre-
vious values of the stress T(#;) and the constant value of D, so that

S(tz) = 8(11) + AtT(ll) -D. (66)
Step 2 integrates Eq. (36e) to obtain the trial elastic distortion B’

B = B/(1) + At[LB, + B.L" — (D I)B’e] (67)

Using the values {J(5,),B.,0(t1), ¢(t1), ;(t1)}, the quantities {p*,a%,Y* = Y(p*)} are determined. De-
pending on the functional form for I'y in (39a) it may be necessary to iteratively solve this evolution
equation to determine the final value ¢,(#,). However, this procedure is not described in detail because a
specific functional form for I'y is not specified.

The effects of viscoplasticity are determined by the procedures described in Rubin (1989) and Rubin and
Attia (1996). Specifically, the effects of plasticity can be determined using a radial return algorithm which

requires implicit integration of the evolution equation, such that

(1—A)=ATyh, o =Jd,, B =JB",  B'=B'—iB DI,

B/ — B~ (B DL (69)
where /1 is the scale factor used to reduce the trial stress. Now, with the help of (56) it follows that
1+ AtrpBY*
A=1 for oY j=—-"_ forg >7Y".
or o =TT Al or g; > (69)

Next, the procedure moves to Step 4 where the effects of tensile failure are considered. To this end, the
evolution equations (36e) and (39b) are evaluated implicitly and are written in the forms

B.(t,) = B]" — 2B, () AtT'y (p; @ ;) — 2B, (62) ATy (py @ p,) — 2B5(82) AT (5(ps @ p3), (70a)

Adp = ¢p(ta) — (1) = [1 — ¢1(t2) — Pe(t2)] ALy, (70b)

where p, are the eigenvectors of B, and f5;" are its eigenvalues so that B,* can be expressed in the spectral
form
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B =B (pr@py) + By (P, @ P2) + B3 (P @ ps). (71)
Thus, Eq. (70a) can be rewritten as three scalar equations
AB; = Bi(ta) — B = =2P;()AtT;, (no sum on i), (72)

where only two of these equations are independent since B, is a unimodular tensor. Furthermore, using the
constitutive equations (25), (29), (48)—(50), it follows that p and o} become

p= (1= ) pu + paaless —aan) + 4], o= (1 @) 'G[p,— 4B, 1)]. (73)

Thus, assuming the stresses remain relatively small whenever tensile failure is active (J. and f; are each close
to unity), the final values of p and ¢} are approximated by

plts) = p™ + poCidy,  ai(12) = o] + (1 = ) (12) ' Go[AB; —{(ABy + AB, + ABy)]. (74)

Moreover, Egs. (70b) and (72) are further approximated by replacing ¢¢(¢,) with ¢.(#), and f,(#,) with
unity, on the right-hand sides of these equations to obtain

Ape =1 = di(t2) — de(t)]AtIe, AP = —2AtT,. (75)
Thus, the principal stresses can be approximated by

0i(t2) = 07" = [{1 = a(t2) = brlt) b CHJ AT — [2(1 = @) (12) ' Go| AurT, (76)
which can be rewritten in the form

O'i(tz) = O';(* — C,‘]'Ff/',

Cit = Con = Css = [{1 = di(12) = r(0)}paCh + 41 = @) (1) Go| Ar > 0,

Cio = Cis = Gy = [{1 = (1) = e(0)}paCh = 31 = @) (1) Go| Ar > 0,

Next, the estimates A" and 47 of A and 4, respectively, are obtained by Euler integration of the rota-
tional part of (43)

A" = A1) + A [WA(t)) + A(1))WT], A7 = (A" (p;®p;)) (no sum on i). (78)

Then, the values of I'y; in (77) are determined by evaluating the constitutive equations (59), with the help of
the final values o,(#,) and the estimates A4;, such that (59) can be rewritten in the forms

oi(tz) — Tui(11) > b (11) < —{oi(t2) + Tii(11) } > n ] .
I'y;=T — A" no sum on i). 79
o= rol( 22 Sl ; | ¢ ) (79)
Substituting (79) into (77) yields an equation which can be written in the matrix form

Specifically, since each of I'r; can be negative, zero, or positive, there are 27 combinations of the matrix 4,
and the vector B;. To record these values it is convenient to introduce the auxiliary variables /; by the
equations

I, =—-1 for I <0, ;=0 for Iy =0, ;=1 for Iy >0, (81)
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so that

r
(A" + <[j>c.,_f0 (no sum on j),

J

I'ny ¢
A =05+ <—1,/>Cz:i7f oy

rfO ¢f ny &

3 (82)
Bi=0 + ; [—<—I,—>C,:,»Tf @+ o (45)" Ti; + {1;)Cy T

Tfjv

where 0;; is the Kronecker delta symbol. The solution of (80) is obtained by guessing a branch of the so-
lution (based on the values of I'y; associated with estimates of the stresses g;), then using the appropriate
values of 4;; and B; and solving (80) for the updated o;. The solution is considered to be correct if the
updated values of I'f; correspond to the same branch that is being checked.

At present it is not known how to analytically analyze this solution procedure to determine if the
solution is unique and, if so, to determine the optimal path to the solution. Consequently, the solu-
tion procedure was tested numerically by specifying values of ¢;* as random positions in a cube
[-107; < g7* < 107;]. The results of these calculations with one million random values indicate that about
70% of the guesses based on ¢;* yielded the correct solution branch. The correct solution was obtained by
the second guess in about 10-20% of the trials. Occasionally, either a few multiple solutions are found, or
an infinite loop occurred with the solution bouncing between a few trial solutions because of floating point
inaccuracies. However, for each of these cases the multiple solutions or the trial solutions were close to each
other (and were often near the boundaries of expansion and contraction). Consequently, it was decided to
terminate the solution search either when a solution is found or after a maximum of seven iterations (which
exceeds the typical number of iterations required in the random calculations).

Once the solution of (80) is obtained, the updated values of I'y; are used in (35) to determine I'r and I7,.
Specifically, the solutions of (72) and (74) are modified to obtain

B =B 411++22A£§<_FI;;> ) Bi(t2) = [Bﬁz@]imﬁn (no sum on i),
B.(12) = Bi(L2)p, @ Py + Ba(2)P, @ Py + B3(12)Ps @ 3, (83)
il = (1= dn(e) = {1 = dul) — e} | T | )

which ensure that (1) remain positive, B.(#) remains a unimodular tensor, ¢(5,) is non-negative and
¢(t,) is smaller than unity. Furthermore, the final value A(f,) of the damage tensor is obtained by using the
updated values of f5; and I'; in the formula

(I'n)p(2)
(1447

(P ®py) +M(P2®Pz)+w(l’s®l’s) : (84)

At,) = A" + Atm
(&) ! l (+2) VS

From (49) the constitutive equation for the internal energy ¢ takes the general form

e=3(J,0,¢,0). (85)

Thus, the final temperature 6(#,) associated with Step 5 is determined by using the value &(#,) obtained in
(66) and solving the equation

e(J(12),0(t2), (12), u (12)) = (t2). (86)

When G is a function of temperature, this equation is a non-linear function of 6(¢,) which must be solved
iteratively. However, for constant G (53), the constitutive equation (49) for ¢ is a linear function of 0, which
can be solved to obtain
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0(02) = O+ ——— | i) — 00fi0e) = () + 5 Gofo = 3)|, 7)

s0Csv

with J, and oy being the updated values associated with ¢ = ¢,.

6. Examples

The objective of the example problems considered in this section is to demonstrate typical features of the
proposed model and not to match any particular set of data for a specific material. Specifically, in order to
examine the response of this model it is convenient to consider the response to homogeneous deformation
which is characterized by specifying a loading history for the velocity gradient L. Moreover, the defor-
mation gradient F is determined by integrating the evolution equation

F =LF, (88)
and the Lagrangian strain E is defined by
E =L1(F'F-1I). (89)

For the examples considered below, the evolution equations (15b), (24b), (39a,b), (40a), (43) and (88),
are integrated subject to the initial conditions

J=1, B =1, ¢; =0, ¢ =0, A=0, F=1, g = 0. (90)
Thus, since I'1 = 0, the porosity ¢; = 0 and the total porosity ¢ = ¢;. Furthermore, let {L;, E;;, T};, 4;;} be
the components of the tensors {L,E, T, A}, respectively, relative to the fixed rectangular Cartesian base

vectors e;.
The loading history is specified by a combination of the following deformation paths:

Uniaxial strain in the e; direction

L =De ®e, (91)
Uniaxial strain in the e, direction

L =De;, ®e,, (92)
Isochoric deformation in the e;—e, plane

L:E[e]®e17e2®e2], (93)

V2

Isochoric simple shear in the e;—e, plane

L = V2De, © e, (94)
Pure dilation

L— %I, (95)

where the rates of deformation have been normalized to have the same magnitude of the deformation rate
D. Unless otherwise stated, the value of D is specified by

D=+10s", (96)

which is characteristic of mild shock loading in large rock structures.
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Typical material properties of hard granite are obtained from Handin (1966), and Schock et al. (1973)
and specified in Tables 1-3 and are used in the following examples. For simplicity, the Gruneissen gamma
74 18 specified to be zero and no values are specified for ¢y, and 0y, since temperature is not needed for the
calculations. Also, the value of I'y is taken to be infinity in order to obtain rate-independent plastic re-
sponse.

For these material parameters, tensile failure can occur for low pressures (i.e. near free surfaces) but not
for higher pressures. Due to the complicated loading histories being presented it is convenient to exhibit all
quantities as functions of time. For each of the loading histories, figures (a) show the strains, figures (b)
show the stresses, figures (c) show the porosity and plastic strains, and figures (d) show maximum principal
value A.x and minimum of principal value 4,,;, of A in the e;—e, plane as well as its component 43;. For
some of the loadings figures (e) show the angle ¢ characterizing the principal direction p,,,, associated
with Apax

Pmax = COS 0€; + sin de,. (97)

Fig. 1 shows the response to a cycle of uniaxial extension and contraction in the e; direction, followed by a
cycle of uniaxial extension and contraction in the e, direction. For this loading the angle § equals zero so it
is not plotted. During the first extension in the e; direction, tensile failure occurs in 77; and the values of 75,

Table 1
Typical material properties for the thermoelastic response of granite
Value Equation
] 0 (23a)
P (Mg/m?) 2.67 (23a)
Cy (km/s) 4.20 (50)
S 1.50 (50)
750 0.0 (50)
csy (J/IKg/K) - (48)
0 (K) — (48)
Gy (GPa) 28.80 (53)
Table 2
Typical material properties for the plastic response of granite
Value Equation
Ty (s71) (9] (56)
Yy (GPa) 0.10 (56)
k (GPa™) 17.0 (56)
ky (GPa™) 0.33 (56)
Table 3
Material properties for tensile failure
Value Equation
I (s7) 10° (59)
ag 107° (59)
Tr (MPa) 10.0 (59)
ne 3.0 (59)
my (s7h) 10° (43)

ny 2.0 (43)
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Fig. 1. Response to cycles of uniaxial strain.

and T3; are equal. Porosity opens during extension and closes during contraction (with almost zero stress
once damage is complete). During the first extension in the e, direction tensile failure occurs in 75, at the
virgin tensile strength since this direction was not damaged during the first part of the cycle of loading (see
Fig. 1d). Also, since the e, direction has already been damaged, the value of 7}; remains near zero during
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Fig. 2. Response to cycles of isochoric deformation.
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this extension, whereas the value of 733 becomes tensile. As T», fails, porosity again opens during extension
and closes during contraction (with almost zero stress once damage is complete).

Fig. 2 shows the response to a cycle of isochoric deformation with simultaneous deformation occurring
in both the e; and e, directions. Specifically, the first part of the loading is a cycle with extension (£}, > 0) in
e; direction and contraction (E», < 0) in the e, direction, and the second part of the loading, is a cycle of
with contraction (E7; <0) in the e; direction and extension (E,, = 0) in the e, direction. Fig. 2¢ shows an
expanded view of the tensile portion of the response shown in Fig. 2b. The main response of directional
failure is again captured with tensile failure occurring in the e; direction during the first part of the loading
and tensile failure occurring in the e, direction during the second part of the loading. The main differences
between the first and second parts of the loading can be seen in Fig. 2b and d where it is observed that
during the first part of the loading there is no damage associated with the e, direction so that substantial
compression can occur (75, < 0 in Fig. 2b) in that direction. This is accompanied with porosity change (Fig.
2d) required to limit the tensile stress 77;. In contrast, during the second part of the loading, the e; direction
has been pre-damaged (Fig. 2e) so the constitutive equations (30), (58)—(60) allow inelastic compression in
this direction whenever ¢, is non-zero. Moreover, during this part of the loading inelastic extension occurs
in the e, direction. The net effect is to maintain the porosity near zero. In other words, when the material
has been fully damaged in both the e; and e, directions, the material flows with small deviatoric stresses.
This is similar to what would be expected in a granular material with no external pressure.

Fig. 3 shows the response to large deformation simple shear. It can be seen from Fig. 3e that damage
initiates in the 6 = 45° direction and porosity grows (Fig. 3c). This causes the pressure to increase so the
stress field shown in Fig. 3b is nearly equivalent to uniaxial compression in the direction 6 = 135°. It can be
seen from Fig. 3c that tensile failure and plastic flow occur simultaneously during this process. Fig. 3e
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Fig. 3. Response to simple shear.
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Fig. 4. Response to pure dilation (compression) followed by simple shear.

shows that the damage tensor rotates with ¢ decreasing. Eventually enough damage accumulates that A,
increases (Fig. 3d) and causes compressive void strain in the p, direction with porosity recompression (Fig.
3c) and decrease in pressure (Fig. 3b). After this point the material continues to flow with near zero stresses
in the e;—e, plane and compressive T3; stress (Fig. 3b). Furthermore, it is noted that 433 remains zero for
this deformation and the values of 4,,, is small enough that the damage is plotted using a log scale in
Fig. 3d.

Fig. 4 shows the response to a small pure dilation (compression) followed by large deformation simple
shear. For this problem the pressure is high enough that the material flows plastically with no tensile failure.
This response would be typical deep enough under ground where the confining stress in the rock is high.

7. Conclusions

A general theoretical structure has been developed to model directional tensile failure with void opening
and closing. The resulting theory is hyperelastic in the sense that the stress is determined by derivatives of
the Helmholtz free energy, and the theory is thermodynamically consistent and properly invariant under
superposed rigid body motions. Specific constitutive equations for tensile failure have been proposed which
satisfy the second law of thermodynamics and can augment rather general constitutive equations for porous
compaction and dilation, as characterized by the evolution equation (39a). Moreover, although the model
developed here has focused on the phenomena (P3) associated with the inelastic effects of the rate of void
opening and closing due to tensile failure, it is possible to include the phenomena (P2) by using a scalar
measure of damage to degrade the shear modulus. However, degradation of the non-linear thermome-
chanical response to dilatation is more difficult.

A numerical algorithm has been developed and the example problems considered in Section 6 show that
the model predicts reasonable results to a variety of loading histories. The damage tensor A that is in-
troduced in this model can be advected using standard methods in Arbitrary Lagrangian Eulerian (ALE)
computer codes. Moreover, this constitutive model has been implemented into a general Adaptive Mesh
Refinement (AMR) computer code GEODYN developed at Lawrence Livermore Laboratory and simu-
lations of complicated shock loading problems are currently being studied.
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